All Solid-State Spectral Broadenin and Temporal Compression of Femtosecond Pulses from a Ytterbium Doped Thin-disk Laser

Conclusions: In this thesis a recently proposed method for spectral broadening in bulk material is further investigated with focus on pulse compression after broadening stage. The laser source is a Ytterbium doped thin-disk laser with 35J.LJ pulse energy, repetition rate of 100 KHz and initial pulse duration of about 300 fs . Along with many available approaches to spectral broadening such as gas-filled hollow-core fibers, the multi-plat e glass setup is a cheap and robust solution for broadening. This approach allows us to exploit the air gaps between the plates to avoid self-focusing and beam collapse inside the material. In order to choose the best candidate, fused silica and BK7 plates were examined with more emphasis on the amount of broadening and durability. The broadening stage is followed by a prism compressor and the beam diagnostic consist ing of a Frequency Resolved Optical Gating (FROG) setup and an Optical Spectrum Analyzer (OSA). With the compressor a pulse duration of 52 fs can be achieved, which is close to the transform limit of 42 fs. We also performed numerical simulations in order to investigate the dynamics of such a nonlinear system.